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Incretins are peptide hormones, exemplified by glucose-dependent insulino-
tropic peptide and glucagon-like peptide 1 that are released from the gut in
response to nutrient ingestion and enhance glucose-stimulated insulin secre-
tion. Incretin action is terminated due to N-terminal cleavage of the peptides
by the aminopeptidase dipeptidyl peptidase IV (DPP-IV). Hence, inhibition of
glucose-dependent insulinotropic peptide and glucagon-like peptide 1 deg-
radation via reduction of DPP-IV activity represents an innovative strategy for
enhancing incretin action in vivo. This review summarises the biology of
incretin action, the structure, expression and pleiotropic biological activities
of DPP-IV and provides an overview of the rationale, potential merits and
theoretical pitfalls in the development of DPP-IV inhibitors for the treatment
of type 2 diabetes.
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1. Introduction

Incretins are gut peptides, predominantly glucose-dependent insulinotropic peptide
(GIP) and glucagon-like peptide 1 (GLP-1), which are released from the gastrointes-
tinal tract in response to nutrient ingestion and promote nutrient assimilation via
potentiation of glucose-dependent insulin secretion. Incretins, particularly GLP-1,
also function in part by contributing to the neurohormonal signals emanating from
the distal gut, the ‘ileal brake’, which regulate the rate through which nutrients tran-
sit along the GI tract. The available evidence suggests that enhancement of incretin
action may be useful for lowering blood glucose in subjects with type 2 diabetes
mellitus. Nevertheless, subjects with type 2 diabetes or obesity may exhibit a dimi-
nution in the secretion of endogenous incretins, particularly GLP-1, following food
ingestion [1,2]. Furthermore, incretin action is rapidly terminated via the action of
dipeptidyl peptidase IV (DPP-IV), which inactivates both GIP and GLP-1 via
cleavage at the position 2 alanine. This review provides an overview of incretin and
DPP-IV biology, with a focus on critical evaluation of the issues surrounding the use
of DPP-IV inhibitors for the treatment of type 2 diabetes.

1.1 Glucose-dependent insulinotropic peptide actions
GIP is a 42 amino acid peptide originally characterised as an active component of
intestinal extract that inhibited gastric acid secretion, hence its original designation
as a gastric inhibitory polypeptide. Subsequent studies demonstrated that GIP
exhibited potent insulinotropic properties [3], leading to its concurrent designation
as a glucose-dependent insulinotropic polypeptide. GIP directly enhances insulin
secretion through a specific GIP receptor expressed on islet β cells [4]. The physio-
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logical importance of GIP action has been delineated in stud-
ies using peptide antagonists, GIP receptor knockout mice or
antisera directed against the GIP receptor. Acute impairment
of GIP action results in defective glucose-stimulated insulin
secretion in rats and mice [5,6]. Similarly, mice with targeted
disruption of the GIP receptor gene (GIPR-/-) exhibit nor-
mal fasting glucose but impaired glucose clearance and
reduced insulin secretion following oral glucose challenge [7].
GIP receptors are also expressed on adipocytes, where GIP
action may promote fatty acid synthesis and lipid accumula-
tion [8]. Intriguingly, GIPR-/- mice are resistant to weight
gain and develop less extensive glucose intolerance following
months of high fat feeding, yet exhibit normal feeding behav-
iour, enhanced fuel oxidation and increased metabolic rate
[9]. Furthermore, a double mutant ob:ob/GIPR-/- mouse
exhibits less weight gain and relatively improved glucose tol-
erance compared to the ob:ob mouse alone. These unex-
pected findings suggest that GIP receptor antagonists merit
further analysis in the setting of nutrient-induced obesity and
glucose intolerance.

 Although GIP stimulates insulin secretion in normal
rodents and human subjects, its insulinotropic actions are
markedly attenuated in experimental diabetes [10], perhaps
due in part to decreased GIP receptor expression and/or func-
tion. Similarly, GIP infusion in human subjects with type 2
diabetes does not increase insulin secretion to the same extent
seen in normal subjects [11-14], and normoglycaemic relatives
of subjects with type 2 diabetes exhibit decreased GIP respon-
sivity [15]. These findings suggest that type 2 diabetes may be
associated with both genetic and acquired resistance to GIP
action. Hence, there remains comparatively reduced enthusi-
asm for the use of GIP agonists alone in the treatment of
type 2 diabetes, although recent reports suggest that modified
protease-resistant GIP receptor agonists [16] may exert glucose-
lowering effects in subjects with type 2 diabetes.

1.2 Glucagon-like peptide 1 actions in vivo
Two equipotent bioactive forms of GLP-1, GLP-1(7-
36)amide and GLP-1(7-37), are liberated from proglucagon
in enteroendocrine L cells and secreted in response to nutri-
ent intake. Meal-stimulated GLP-1 secretion appears attenu-
ated in human subjects with type 2 diabetes [1,17]. GLP-1
levels fall rapidly following postprandial excursion, and
clearance reflects the actions of the kidney [18,19], enzymatic
inactivation by DPP-IV [20-22] and, to a lesser extent, neutral
endopeptidase (NEP) 24.11 [23]. GLP-1 actions on the islet
β cell include stimulation of glucose-dependent insulin
secretion [24-26] and induction of glucose competence [27].
GLP-1 also increases insulin gene promoter activity and
insulin biosynthesis in cell lines [28,29] and in rodents [30].
GLP-1 also lowers blood glucose via inhibition of gastric
emptying [31], thereby attenuating the rate of nutrient entry
into the circulation [32], and inhibition of glucagon secretion
from islet α cells, probably via effects on insulin or somato-
statin secretion [33].

GLP-1 directly stimulates glucose-dependent insulin
secretion via an increase in β-cell cAMP [24], through both
protein kinase A-dependent and independent mechanisms,
with activation of signalling through small G proteins con-
tributing to control of insulin exocytosis [34]. GLP-1 receptor
(GLP-1R) activation also promotes calcium mobilisation [35]

and closure of the ATP-sensitive KATP channel [36]. Further-
more, genetic disruption of SUR channel activity in mice is
associated with resistance to the insulinotropic actions of
both GLP-1 and GIP.

GLP-1 administration to normal or diabetic rodents
induces β-cell proliferation [37] and islet neogenesis, leading
to an increase in β-cell mass [38,39]. Furthermore, treatment of
pancreatic exocrine cell lines with GLP-1R agonists induces a
programme of endocrine differentiation associated with
molecular features of functional β cells capable of glucose-
stimulated insulin secretion [40,41]. The cellular signals cou-
pling GLP-1R activation to islet cell growth appear to include
activation of the mitogen-activated protein kinase (MAPK)
pathway, protein kinase C and the transcription factor
PDX-1 [42]. These observations raise the possibility that
GLP-1 may be able to preserve or restore deteriorating β-cell
function in type 2 diabetics in part via islet regeneration and
augmentation of functional β-cell mass.

GLP-1 also stimulates secretion of hypothalamic-pituitary
hormones [43-45] and induces potent anorexic effects following
intracerebroventricular administration in rats and mice [46,47].
Furthermore, chronic administration of GLP-1 analogues is
associated with weight loss in experimental rodent and pri-
mate models of diabetes [48,49], and peripheral GLP-1 admin-
istration induces satiety and reduces meal consumption in
normal, obese and diabetic human subjects [50,51].

1.3 Essential physiological actions of glucagon-like 
peptide 1
Experiments using GLP-1R antagonists and characterisation
of GLP-1R null (GLP-1R-/-) mice have revealed essential
physiological actions dependent on GLP-1R signalling. Acute
administration of the GLP-1R antagonist exendin(9-39)
increases fasting glycaemia and impairs glucose clearance fol-
lowing glucose loading, in association with decreased levels of
circulating insulin, in both rodents and human subjects
[5,52-55]. Similarly, GLP-1R-/- mice exhibit mild fasting
hyperglycaemia and impaired glucose clearance following
either oral or intraperitoneal glucose loading [56]. Although
chronic intracerebroventricular administration of exendin (9-
39) increased food intake and weight gain in rats [57], GLP-
1R-/- mice in the CD1 genetic background are lean and do
not develop obesity even following prolonged high fat feed-
ing [58]. Moreover, GLP-1R-/- mice exhibit only modest
defects in islet size and topography [59] and develop appropri-
ate islet hyperplasia and upregulation of insulin gene expres-
sion in response to obesity and insulin resistance [60]. Hence,
genetic loss of GLP-1R signalling in the mouse does not pro-
duce major perturbations in β-cell growth or insulin biosyn-
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thesis, perhaps due to upregulation of compensatory
mechanisms, such as enhanced secretion of and sensitivity to
GIP [61].

1.4 Glucagon-like peptide 1 actions in normal and 
diabetic human subjects
Consistent with preclinical findings, short-term GLP-1 infu-
sion in normal subjects potentiates glucose-dependent insulin
secretion, inhibits glucagon secretion and gastric emptying
and produces short-term satiety leading to reduction in food
intake [13,50,62,63]. GLP-1 administration to subjects with type
2 diabetes also lowers glycaemia following subcutaneous or
intravenous short-term administration [64-67]. GLP-1 also
enhances β-cell responsivity to sulfonylurea agents in subjects
with type 2 diabetes [68]. The importance of gastric emptying
and glucagon secretion for GLP-1 action is exemplified by
studies demonstrating glucose-lowering effects of GLP-1 in
patients with type 1 diabetes mellitus [62,69].

Native GLP-1 is rapidly degraded to inactive GLP-1(9-37)
or GLP-1(9-36)amide [21,22,70]. The plasma half-lifes of GLP-1
(7-36) amide and GLP-1(7-37) as assessed by exogenous infu-
sion of the peptides in human subjects are similar, 5.3 ± 0.4
versus 6.1 ± 0.8 min, respectively, and the metabolic clearance
rates of the two biologically active GLP-1 molecules were also
comparable (14.6 ± 2.4 versus 12.2 ± 1 pmol/kg x min) [71].
The short duration of endogenous GLP-1 action, taken
together with subsequent data demonstrating that a continu-
ous 24-h infusion of GLP-1 was superior to a similar but
shorter 16-h infusion for lowering of blood glucose in poorly
controlled diabetic subjects [72], provides a sound rationale for
development of longer-acting degradation-resistant GLP-1
analogues or continuous infusion approaches for the treatment
of patients with type 2 diabetes [73].

1.5 Treatment of type 2 diabetes with glucagon-like 
peptide 1 receptor agonists
Following observations that short-term 24 – 48 h GLP-1
infusions lowered blood glucose in diabetic subjects [74,75],
several studies examined the metabolic consequences of longer
periods of GLP-1 infusion using the native peptide. A 3-week
infusion of GLP-1 in six subjects with type 2 diabetes lowered
meal-related glycaemic excursion, increased plasma insulin
and decreased plasma glucagon in the postprandial period,
with no evidence for tachyphylaxis at the end of the 3-week
treatment period [76]. A longer 6-week continuous subcutane-
ous GLP-1 infusion study in 20 subjects with type 2 diabetes
demonstrated significant improvements in mean plasma glu-
cose, fructosamine, haemoglobin (Hb)A1c, fasting and post-
prandial free fatty acids, with reduced gastric emptying,
weight gain and improved β-cell function in the GLP-1-
treated subjects [51]. Hence, native GLP-1, if chronically deliv-
ered via a continuous infusion strategy, appears highly effec-
tive for the treatment of type 2 diabetes.

To circumvent the need for continuous GLP-1 administra-
tion, considerable effort has been directed towards the gener-

ation of long-acting degradation-resistant GLP-1 analogues
suitable for once- or twice-daily administration. Several
GLP-1R agonists are currently in clinical trials including the
lizard peptide exendin-4 [77] and a fatty acid derivatised
DPP-IV-resistant analogue, NN2211 [49]. Intravenous infu-
sion of exendin-4 in normal [63] and diabetic subjects [78] low-
ers fasting and postprandial plasma glucose [63], stimulates
insulin secretion, reduces levels of circulating glucagon and
inhibits gastric emptying and food intake. Similarly, subcuta-
neous administration of NN2211 results in a plasma drug
half-life of ∼ 12.6 h [79] and lowers both fasting and post-
prandial glycaemia via effects on insulin and glucagon secre-
tion and gastric emptying [80].

2. Dipeptidyl peptidase IV 

2.1 Structure and expression of DPP IV
DPP-IV, also known as the lymphocyte cell surface protein
CD26, is a widely expressed glycoprotein that exhibits three
principal biological activities: in humans, it functions as an
adenosine deaminase (ADA)-binding protein; it contributes
to extracellular matrix binding; and of direct relevance to
this review, it exhibits post proline or alanine peptidase activ-
ity, thereby inactivating or in some cases generating biologi-
cally active peptides via cleavage at the N-terminal region
after X-proline or X-alanine (Box 1) [81,82]. DPP-IV exists as a
membrane bound 110 kDa glycoprotein that is catalytically
active as a dimer, whose structure is reasonably well con-
served across different mammalian species. The human
DPP-IV gene contains 26 exons, is localised to the long arm
of chromosome 2 and intriguingly, is localised adjacent to
the proglucagon gene which encodes GLP-1 and GLP-2,
principal substrates for DPP-IV. The human DPP-IV cDNA
encodes a predicted protein of 766 amino acids, with 6
amino acids in the cytoplasm, 22 residues spanning the
plasma membrane and 738 amino acids comprising the
extracellular domain. DPP-IV also exists as a soluble circu-
lating form of ∼ 100 kDa, which retains both adenosine
deaminase binding and enzymatic activity and the N-termi-
nal amino acid of the soluble form appears to be Ser39 [83,84].
Consistent with the classical serine protease consensus motif
of G-X-S-X-G, the corresponding sequence in DPP-IV is G-
W-S-Y-G, with selected mutations in a novel catalytic triad
of Ser624, Asp702 and His734 abolishing catalytic activity
of the murine molecule [85].

DPP-IV is a widely expressed enzyme present on cells in
most tissues, including the kidney, gastrointestinal tract, bil-
iary tract and liver, placenta, uterus, prostate, skin and, of
potential relevance to the clinical use of inhibitors, lym-
phocytes (immune function) and endothelial cells (inactiva-
tion of circulating peptides) [86-88]. Furthermore, the
expression of DPP-IV in specific tissues or as a circulating sol-
uble form, is widely modulated in the setting of specific dis-
eases or tissue injury and inflammation, as reviewed in
[81,89-92] and summarised in Table 1.
Expert Opin. Investig. Drugs (2003) 12(1) 89
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2.2 CD26/DPP-IV and normal immune function
Originally identified as a lymphocyte cell surface ADA-bind-
ing protein with costimulatory activity, CD26 expression and
activity are increased following T-cell activation and distinct
subpopulations of CD26bright T cells have been identified that
subserve multiple functions, including antigen recall, immu-
noglobulin synthesis and activation of cytotoxic T cells [82].
CD26 associates with other lymphocyte cell surface molecules,
including the chemokine receptor CXCR4, ADA and CD45
[89,93], and mAbs against CD26 promote aggregation of both
CD26 and CD45 into lymphocyte lipid rafts. Furthermore,
CD26 directly binds to the cytoplasmic domain of CD45,
providing a mechanism for engagement of specific signal trans-
duction pathways leading to IL-2 production [94], a common
downstream event secondary to CD26 activation. Conversely,
interleukin induces CD26 expression on a subset of human

natural killer lymphocytes [95]. Activation of lymphocyte
CD26 leads to increases in intracellular calcium, tyrosine
phosphorylation of multiple substrates and cell proliferation
[96,97]. CD26 undergoes mannose-6 phosphorylation leading
to interaction with the mannose-6-phosphate/insulin-like
growth Factor II receptor (M6P/IGFII) receptor following
T cell activation [98]. Soluble CD26 also interacts with the
(M6P/IGFII) and enhances transendothelial T-cell migration,
an effect that requires its DPP-IV enzymatic activity [99].

The majority of experiments assessing lymphocyte CD26
activity use specific antibodies for CD26 activation; whether
the enzymatic peptidase activity of CD26 is involved in or
required for multiple aspects of lymphocyte signalling has not
always been conclusively determined [93]. Experiments carried
out with mutant soluble CD26 molecules have demonstrated
the importance of DPP-IV enzymatic activity for enhance-
ment of T-cell proliferation and induction of monocyte
CD86 expression [100]. Similarly, antiCD26 mAbs inhibit
T-cell growth and proliferation via induction of G1/S arrest,
effects which are dependent on the enzymatic function of
CD26 [101]. Interpretation of data obtained from experiments
using specific DPP-IV inhibitors to examine lymphocyte
function is complicated by the specificity of the inhibitor
employed. However, DPP-IV inhibition has been shown to
modify T- and B-cell proliferation and cytokine production,
as reviewed in [82]. In contrast, analyses of cells from the
CD26/DPP-IV mutant Fischer 344 rat or the CD26/DPP-IV
knockout mouse have not yet revealed major defects in lym-
phocyte activation or immune function [102,103]. The available
evidence suggests that the enzymatic activity of DPP-IV may
not be essential for many of the T-cell activating or costimula-
tory properties attributed to CD26. However, not all experi-
ments have used both wild-type and mutant CD26 molecules
to examine this specific question.

2.3 CD26/DPP-IV activity and disease
DPP-IV activity is increased in patients with cholestatic hepa-
tobiliary disease [104], hepatitis-C-associated liver injury [105]

or osteoporosis [106], and in T cells from patients with multi-
ple sclerosis [107] (Table 1). CD26 expression and activity may

Box 1. Putative substrates for dipeptidyl peptidase IV.

Xaa-Pro
Tyr-Melanostatin 
Endomorphin-2
Enterostatin
B-Casomorphin
Trypsinogen pro-peptide
Bradykinin
Substance P
CLIP
Gastrin-releasing peptide (GRP)
Neuropeptide Y (NPY)
Peptide YY (PYY)
Aprotinin
RANTES
Granulocyte chemotactic protein-2 (GCP-2)
Stromal cell-derived factor 1a (SDF-1a)
Stromal cell-derived factor 1b (SDF-1b)
Macrophage-derived chemokine (MDC)
Monocyte chemoattractant protein 1 (MCP-1)
Monocyte chemoattractant protein 2 (MCP-2)
Monocyte chemoattractant protein 3 (MCP-3)
Eotaxin
Interferon-inducible protein 10 (IP-10)
Insulin-like growth factor (IGF-I)
Procolipase
Interleukin-2 (IL-2)
Interleukin-1b (IL-1b)
α1-Microglobulin
Prolactin
Trypsinogen
Human chorionic gonadotrophin (HCG)

Xaa-Ala
Peptide histidine-methionine (PHM)
Glucose-dependent insulinotropic peptide (GIP)
Growth hormone-releasing hormone (GRH)
Glucagon-like peptide 1 (GLP-1)
Glucagon-like peptide 2 (GLP-2)

Box 2. Experimental diseases or conditions modified 
by DPP-IV inhibition.

Diabetes
Experimental encephalomyelitis
Murine abortion
Sensitivity to chemotherapy
Invasion, growth and migration of cancer cells
Keratinocyte DNA synthesis
Experimental nephritis
Experimental arthritis

DDP-IV: Dipeptidyl peptidase IV.
90 Expert Opin. Investig. Drugs (2003) 12(1)
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be reduced in T-cell subsets from patients with active HIV
[108,109], but increased in HIV-infected subjects with immune
reconstitution [110].

In contrast, serum DPP-IV activity is decreased during
pregnancy [111], in subjects with active Crohn’s disease [112],
major depressive illness [113,114], eating disorders [115], active
systemic lupus erythematosis [116] or rheumatoid arthritis [117].
Similarly, serum DPP-IV activity is decreased in subjects with
active Wegener’s granulomatosis, Churg-Strauss syndrome
and microscopic polyangiitis, with levels increasing in patients
with disease remission [118]. Of potential clinical relevance to
diabetes therapeutics, DPP-IV activity is significantly reduced
in hypertensive patients treated with angiotensin-converting
enzyme (ACE) inhibitors when measured during an episode
of drug-associated angioedema [119].

Altered CD26/DPP-IV expression has also been associated
with specific cancers, including well differentiated thyroid
cancer [120,121] and prostate cancer [122]. Levels are also altered
in some patients with colon cancer [123] and oral cancer [124].

2.4 DPP-IV enzymatic activity and physiological 
peptide substrates
A large number of potential peptide substrates for DPP-IV
have now been identified, as summarised in Box 1 and
reviewed in [81]. For many of these substrates, evidence
implicating a role for DPP-IV in peptide cleavage derives
from pharmacological kinetic studies demonstrating that
incubation of the peptide and purified enzyme in vitro pro-
duces peptide cleavage at the N-terminus [125,126]. Whether
this line of pharmacological evidence necessarily implies a
physiological role for DPP-IV as an essential regulator of
peptide activity in vivo remains unclear [127]. For example,
incubation of 29 amino acid glucagon with purified DPP-IV
yields glucagon(3-29) and glucagon(5-29) [128,129] and
immunoreactive DPP-IV has been colocalised with glucagon
in islet A cell granules [130]. However, increased levels of
intact glucagon have not been demonstrated in CD26-/-
mice or Fischer 344 DPP-IV mutant rats or following

administration of DPP-IV inhibitors to normal rodents or
humans and blood glucose is uniformly lower following
administration of DPP-IV inhibitors in vivo. Hence, estab-
lishment of criteria, as suggested in Box 3 requiring demon-
stration that levels of non-cleaved putative DPP-IV
substrates are increased in genetic models of DPP-IV defi-
ciency and following administration of DPP-IV inhibitors
provides a more rigorous definition for establishing whether
specific peptides are physiological (as opposed to pharmaco-
logical) targets of DPP-IV enzymatic activity.

The principal known peptide substrates considered major tar-
gets of DPP-IV inhibitors when used for the treatment of diabe-
tes are GLP-1 and GIP. Following pharmacological
demonstration that purified DPP-IV cleaves both these peptides
at the position 2 alanine [20,21], infusion of radiolabelled GIP
and GLP-1 into DPP-IV deficient rats revealed almost complete
absence of the predicted degradation products, GIP(3-42) and
GLP-1(9-36)NH2. Concomitant experiments demonstrated
that GIP(3-42) and GLP-1(9-36)NH2 represented the principal
degradation products present in human plasma in both the fast-
ing and postprandial states [22]. The degradation of intact GLP-
1 occurs rapidly, as GLP-1(9-36)NH2 represents > 50% of
detectable immunoreactive GLP-1 released from the isolated
perfused porcine ileum [131], with the proportion of intact to N-
terminal cleaved GLP-1 greatly increased following administra-
tion of DPP-IV inhibitors [131]. Similarly, studies employing
structurally unique DPP-IV inhibitors confirmed that increased
circulating levels of intact GLP-1 and GIP were detectable fol-
lowing inhibitor administration [132-135]. Furthermore, the pro-
portion of intact to N-terminally degraded GLP-1 and GIP is
increased in mice [103] and rats [136] with inactivating mutations
of the DPP-IV gene. Hence, both GLP-1 and GIP satisfy multi-
ple criteria (Box 3) for designation as physiological peptide sub-
strates of DPP-IV in vivo. Although GLP-1(9-36)NH2 is a weak
pharmacological antagonist at the GLP-1R, it does not seem to
function as a physiologically relevant antagonist in vivo [137].

2.5 DPP-IV inhibitors and experimental disease
Given the pleiotropic activities of and potential substrates for
DPP-IV, the effect of activating and more commonly inhibit-

Table 1. Human diseases characterised by changes in 
DPP-IV activity. 

Human DPP-IV activity

Increased Decreased

Rheumatoid arthritis
Multiple sclerosis
Graves’ disease
Hashimoto’s thyroiditis
Sarcoidosis
Psychological stress
Cancer

AIDS
Down’s syndrome
Common variable 
hypogammaglobulinemia
Vasculitis/systemic lupus erythematosis/
rheumatoid arthritis
Cancer
Anorexia/bulimia
Depression
Pregnancy

DPP-IV: Dipeptidyl peptidase IV.

Box 3. Criteria for establishing a physiological role 
for DPP-IV in substrate cleavage.

Cleavage of the peptide by purified enzymatically active 
DPP-IV in vitro
Peptide degradation in vitro inhibited by DPP-IV inhibitors
Altered ratio of intact to degraded peptide following acute 
DPP-IV inhibitor administration to normal animals or humans 
in vivo
Altered ratio of intact to degraded peptide substrate in mice 
or rats with genetic inactivation of DPP-IV

DPP-IV: Dipeptidyl peptidase IV
Expert Opin. Investig. Drugs (2003) 12(1) 91
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ing DPP-IV activity has been examined in different experi-
mental models, including neoplastic cell growth. CD26 binds
to extracellular matrix components including collagen and
fibronectin, potentially modifying cell adhesion, migration
and metastatic behaviour. The potential relationship between
CD26 expression or activity in neoplastic cells and clinical
behaviour of specific tumours, is complex and highly tumour
cell-specific. Human T-cell leukaemia Jurkat cells transfected
with wild-type DPP-IV or mutant DPP-IV devoid of ADA
binding yet retaining enzymatic activity, exhibit increased
sensitivity to the cytotoxic effects of doxorubicin [138]. Simi-
larly, soluble CD26 enhanced the growth inhibitory effects of
doxorubicin in vitro. Consistent with the loss of DPP-IV
expression during melanoma progression, inducible re-expres-
sion of DPP-IV led to loss of tumorigenicity in human
melanoma cells, findings dependent on serine protease activ-
ity [139], whereas DPP-IV-transfected melanoma cells exhib-
ited normal growth but reduced migration independent of
the proteolytic activity of the enzyme [140]. DPP-IV expres-
sion in human ovarian cancer cell lines also correlates with
reduced migration, invasion and decreased peritoneal dissem-
ination in nude mice in vivo [141]. In contrast, inhibition of
DPP-IV activity with diprotin A enhanced invasion of pla-
cental JEG-3 cells in vitro [142]. Paradoxically, the related
membrane bound protease seprase or fibroblast-activating
protein, promotes tumour growth and together with DPP-IV,
forms a complex on the cell surface that participates in gelatin
binding and degradation in migratory fibroblast cells in vitro
[143]. Hence, the effects of DPP-IV expression and activity on
cell growth, migration, invasion and tumorigenicity appear
cell- and context-specific.

The importance of DPP-IV expression and activity has also
been examined in experimental inflammatory disorders. Treat-
ment of mice with the reversible DPP-IV inhibitor
Lys[Z(NO[2])]-pyrrolidide decreased the extent and onset of
adoptive transfer experimental autoimmune encephalomyeli-
tis, effects mediated in part through upregulation of trans-
forming growth factor (TGF)-β1 activity [144]. Similarly, DPP-
IV inhibitors attenuated the extent of collagen- and alkyldi-
amine-induced arthritis in rats, and a mAb directed against
CD26 suppressed experimental nephritis in rats in association
with markedly reduced complement activation [145]. Local
DPP-IV expression has been proposed as a modulator of sub-
stance-P-induced vasodilatation in the setting of chronic rhi-
nosinusitis [146]. However, the importance of local versus
systemic DPP-IV enzymatic activity for the development of
inflammation-associated vasodilatation remains uncertain.

2.6 DPP-IV-related proteases and specificity of DPP-IV 
inhibitors
The term DPP-IV activity- and/or structure-homologues
has been applied to describe the family of often structurally-
related enzymes that exhibit overlapping enzymatic activity
with DPP-IV [147]. Several recent reviews have summarised
the features of mammalian endo- and exopeptidases capable

of cleaving peptides at the N-terminal position 2 alanine or
proline (Box 1) [81,147]. Hence, rigorous experimental proof is
required to implicate an essential physiological role for a
specific peptidase in cleavage of peptide substrates in vivo.
The putative roles of DPP-IV in lymphocyte signalling, cell
growth and migration and the importance of enzymatic
activity for the cleavage of regulatory peptides have been
evaluated with immunoneutralisation and genetic
approaches. For example, the availability of rats or mice with
inactivating mutations in the DPP-IV gene provides an
opportunity to assess the essential or redundant role(s) of
the DPP-IV gene in a broad variety of biological systems.
Similarly, the binding of DPP-IV to human adenosine
deaminase provides an approach for removal of the DPP-IV
molecule from specific fluids or extracts, providing a non-
genetic approach for the assessment of the biological impor-
tance of DPP-IV [84]. Furthermore, experiments employing
mutant DPP-IV molecules in which the enzymatic activity
of DPP-IV has been specifically inactivated are particularly
useful for understanding the contributions of individual
CD26 functional domains in a broad spectrum of CD26
biological activities.

In contrast, the use of ‘specific’ DPP-IV enzyme inhibitors
alone to infer biological activities ascribed to DPP-IV is con-
strained by the difficulty inherent in validating the precise
specificity of individual enzyme inhibitors.

3. Dipeptidyl peptidase IV inhibitors

3.1 DPP-IV inhibition and experimental models of type 
2 diabetes
Considerable evidence from studies in rats, mice, dogs and
human subjects attests to the concept and efficacy of using
DPP-IV inhibitors for the treatment of diabetes [148], and has
recently been reviewed [149,150]. The inhibitor valine pyrrolid-
ide (Val-pyr) reduced porcine plasma DPP-IV activity by >
90% and decreased the degradation of intact GLP-1, both in
the fasted state and following exogenous GLP-1 administra-
tion [151]. Infusion of glucose together with GLP-1 in the
presence of Val-pyr produced a significant augmentation in
levels of plasma insulin compared to GLP-1 infusion in the
absence of the inhibitor [151]. The DPP-IV inhibitor isoleu-
cine thiazolidide (Ile-thiazolidide) prevented N-terminal
degradation of both GLP-1 and GIP in human serum, and
oral administration of Ile-thiazolidide to both lean or obese
Zucker fatty rats inhibited plasma DPP-IV activity,
decreased glycaemic excursion and enhanced levels of circu-
lating insulin following oral glucose loading [152]. In contrast,
administration of the inhibitor alone without concomitant
glucose loading had no effect on levels of fasting glucose or
insulin in obese Zucker rats [152].

Analysis of rat plasma following administration of both Ile-
thiazolidide and radiolabelled GLP-1 demonstrated that 70%
inhibition of rat plasma DPP-IV activity markedly reduced
the degradation of exogenous [125I]-labelled GLP-1(7-
92 Expert Opin. Investig. Drugs (2003) 12(1)
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36)NH2 [132]. Furthermore Ile-thiazolidide reduced glycaemic
excursion, enhanced levels of plasma insulin and prolonged
the half-life of endogenous GLP-1(7-36)NH2 released follow-
ing intraduodenal glucose loading [132]. Similar results were
obtained following administration of the inhibitor
NVP-DPP728 to lean and obese Zucker rats, with enhanced
insulin release and reduced glycaemic excursion detected in
the inhibitor-treated rats, in association with markedly
enhanced levels of intact GLP-1(7-36)NH2 [133].

The glucose-lowering properties of Val-Pyr were subse-
quently examined in C57BL/6 mice following 5 weeks of
high fat (58% total fat) feeding. Consistent with previous
findings, Val-Pyr markedly augmented the plasma levels of
GLP-1 following intravenous GLP-1 administration to nor-
mal C57BL/6 mice, and acute inhibitor administration
decreased glycaemic excursion and increased levels of both
insulin and GLP-1 following oral glucose loading in both
high fat fed and control mice [153]. In contrast, Val-Pyr had no
effect on glucose-stimulated insulin secretion from isolated
islets in vitro. The importance of GIP as a substrate for
DPP-IV inhibitors is illustrated by experiments in mice and
pigs. Administration of Val-Pyr to GLP-1R knockout mice
produces a glucose-lowering effect, suggesting that DPP-IV
substrates independent of GLP-1 are also important for glu-
cose clearance in vivo [103]. Similarly, Val-Pyr markedly
reduces the N-terminal degradation of intact GIP and poten-
tiates the insulinotropic actions of infused GIP in pigs [154].

More recent studies have examined the effects of chronic
DPP-IV inhibitor administration in rodent models of type 2
diabetes. Oral administration of P32/98, 20 mg/kg b.i.d. for
3 months was associated with a progressive improvement in
fasting glucose over the 12-week study period, in association
with enhanced levels of glucose-stimulated insulin, a 12.5%
decrease in relative body weight gain and improvements in
insulin sensitivity as assessed at the end of the treatment period
[155,156]. Inhibitor-treated rats exhibited enhanced insulin
release following pancreatic perfusion with 8.8 mM glucose,
increased insulin-stimulated adipose tissue glycogen synthase
activity and increased insulin-stimulated methyl glucose
uptake in soleus muscle strips [155]. The mechanism by which
incretin hormones increase insulin sensitivity remains unclear,
however, similar findings have been observed in human dia-
betic subjects treated with continuous GLP-1 infusion for
6 weeks [51]. Interestingly, despite the marked improvements
in glucose homeostasis observed in inhibitor-treated rats, fast-
ing levels of plasma DPP-IV activity were significantly
increased in P32/98-treated rats. However, the precise source
of increased circulating plasma DPP-IV remains unclear [155].

Chronic inhibition of DPP-IV activity has also been stud-
ied in Zucker diabetic fatty rats treated once- or twice-daily
with the long-acting inhibitor FE 99901. This compound
produced comparatively greater and sustained inhibition of
plasma DPP-IV activity compared to similar doses of
NVP-DPP728 after single dosing, and a 7-day treatment
period with FE 99901 improved glucose tolerance in associa-

tion with increased levels of glucose-stimulated insulin [157].
Chronic twice-daily treatment with FE 99901 for 25 days sig-
nificantly delayed the deterioration in plasma glucose
observed in control rats treated with vehicle alone, in associa-
tion with a reduction in food intake and water consumption
and modest but significant increases in the levels of circulating
GLP-1. Furthermore, FE 99901-treated rats displayed signifi-
cant reductions in levels of free fatty acids and triglycerides
and increased pancreatic expression of the GLP-1R [157].
Twice-daily inhibitor administration was significantly more
effective than once-daily treatment, attesting to the impor-
tance of sustained suppression of plasma and/or tissue
DPP-IV activity for optimal glucose control.

The effect of an 8-week treatment period using NVP-
DPP728 was examined in C57BL/6 mice fed a high fat diet
[135]. Treatment was commenced at 5 weeks of age and NVP-
DPP728 was added continuously in the drinking water at a
concentration of 0.12 µmol/g body weight, resulting in marked
suppression of plasma DPP-IV activity to < 5% of control val-
ues. Inhibitor-treated mice fed normal or high fat diets did not
exhibit differences in body weight, but cumulative food intake
was significantly reduced in high fat fed mice treated with
NVP-DPP728 when assessed during the last week of the study
period [135]. Glucose tolerance improved and both circulating
insulin and GLP-1 levels increased following 8 weeks of inhibi-
tor treatment in normal or high fat fed mice [135]. Furthermore,
glucose-stimulated insulin secretion was improved in isolated
islets from inhibitor-treated mice and islet size was smaller in
mice treated with NVP-DPP728 [135]. Hence the available evi-
dence from a variety of rodent models supports the efficacy of
chronic DPP-IV inhibitor administration for the treatment of
experimental type 2 diabetes.

3.2 DPP-IV inhibition and the treatment of human 
subjects with type 2 diabetes
Only limited information is currently available concerning
the clinical efficacy of DPP-IV inhibitors in the treatment of
human subjects with type 2 diabetes. NVP-DPP728 has been
administered in a placebo-controlled, double-blind, multi-
centre study either at 100 mg t.i.d or 150 mg orally b.i.d. for
4 weeks to 93 patients with diet-controlled type 2 diabetes;
mean age 64, prior duration of diabetes ∼ 3.6 years, body-
mass index (BMI) 27.2, with a mean fasting glucose of 8.5
and a HbA1c of 7.4% prior to drug treatment [158]. Both
treatment regimens significantly improved mean 24-h glucose
excursion with a reduction in mean 24-h insulin levels noted
in treated subjects. Fasting and postprandial plasma glucose
was also significantly reduced in both treatment arms, as was
HbA1c. Body weight was not changed during the 4 week
study period. Four drug-treated patients experienced symp-
toms compatible with nasopharyngitis and five patients com-
plained of pruritus primarily localised to the palms. However,
these symptoms were transient, with pruritus disappearing
within 48 h without need for discontinuation of therapy. One
patient with pre-existing albuminuria developed transient
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nephrotic syndrome during the first week of treatment, lead-
ing to discontinuation of therapy.

The efficacy of the orally available inhibitor P32/98 has
also been examined in both healthy normal subjects and in
patients with type 2 diabetes [159]. A single 60 mg oral dose
produced a rapid inhibition of plasma DPP-IV activity within
45 min of drug administration. When P32/98 was given
15 min prior to an oral glucose tolerance test in healthy vol-
unteers, increased levels of bioactive intact GLP-1 were
detected in drug-treated subjects. Analysis of the effects of sin-
gle dose P32/98 on glucose excursion in diabetic subjects
revealed reduced glucose area under the curve for patients pre-
viously treated with acarbose and glibenclamide [159]. The
effects of long-term treatment with P32/98 in diabetic sub-
jects have not yet been reported.

4. Expert opinion

The important observations that both GLP-1 and GIP are
rapidly cleaved at the N-terminus, followed by the identifica-
tion of DPP-IV as an essential determinant of incretin inacti-
vation, has fostered considerable interest in evaluation of
DPP-IV inhibitor therapy for the treatment of type 2 diabe-
tes. Concurrently, multiple long-acting GLP-1R agonists are
being evaluated in the clinic in Phase II/III trials in diabetic
subjects. The theoretical advantages of GLP-1R agonists
(Table 2) include the ability to achieve much greater and sus-
tained levels of circulating bioactive GLP-1, which should
provide more robust and sustained activation of GLP-1Rs
coupled to glucose lowering. Furthermore, injectable GLP-1
analogues are likely to be more potent inducers of satiety and
inhibitors of gastric emptying, and they have been shown to
regulate islet cell proliferation and cytoprotection. In con-
trast, although DPP-IV inhibitors are orally available and
potentially more attractive to patients, they are less well char-
acterised with respect to their spectrum of incretin-like
actions and safety profile (Table 2) and are predicted to be less
potent than injectable GLP-1 analogues in the acute lowering
of plasma glucose. 

Hence, several important questions and challenges remain if
this class of agents is to be developed successfully and safely for
use in the diabetes clinic. The large number of potential DPP-
IV substrates, encompassing gut and CNS regulatory peptides,
chemokines and vasoactive peptides, suggests that predicting
and understanding the biology of transient or sustained DPP-
IV inhibition in human subjects may be difficult, even after
exhaustive preclinical evaluation of highly specific compounds.
Furthermore, the pleiotropic functions of DPP-IV, acting as
both a membrane bound and soluble form and exerting diverse
effects on lymphocyte signalling, cell migration and prolifera-
tion, at times independent of its enzymatic activity, provide fur-
ther challenges for scientists seeking to understand how specific
inhibition of enzymatic function may impact the non-enzy-
matic biological actions of DPP-IV in different human tissues.
The relative long-term safety of compounds that produce tran-

sient versus more sustained DPP-IV inhibition cannot be
inferred from available data, although studies of incretin biol-
ogy and preclinical evaluation of DPP-IV inhibitors argue that
continuous potentiation of incretin receptor signalling is likely
to be more effective for the treatment of subjects with type 2
diabetes mellitus.

Although the pharmaceutical industry is developing multiple
potent, highly specific, DPP-IV inhibitor compounds with
favourable pharmacokinetic profiles, the biology and conse-
quences of sustained DPP-IV inhibition may be different in
comparatively well patients with type 2 diabetes versus more
complex older diabetic subjects with additional coexisting ill-
nesses. For example, the effects and putative safety of chronic
DPP-IV inhibitor therapy in diabetic patients with coexistent
immune or inflammatory disorders, atopy, angioedema or
malignancy, cannot be inferred with any degree of confidence
from preclinical or short-term clinical studies. Nevertheless,
despite these concerns, the surprising potency of these com-
pounds in experimental models of type 2 diabetes, the need for
new effective medications to treat type 2 diabetes, taken
together with the preliminary data demonstrating efficacy in
short-term clinical trials, argues for ongoing assessment and
evaluation of these compounds as new therapeutic agents. More
selective approaches for targeting the DPP-IV enzyme, for
example with tissue-specific inhibitors, are under development
and may offer theoretical advantages for restricting drug activity
to one or more localised tissue compartments. Similarly, DPP-
IV inhibitors have been proposed as agents for the treatment of
immune or CNS disorders. However, insufficient data are avail-
able to provide informed opinion about the scientific merits of
these strategies. As is the case for all new investigational agents
representing innovative approaches to disease treatment, there
will be no substitute for rigorous scientific assessment of the
specificity, mechanisms of action, safety and efficacy for each
new DPP-IV compound that enters clinical development for
the treatment of type 2 diabetes.

Table 2. Comparison of DPP-IV inhibitors versus GLP-1 
analogues for the treatment of type 2 diabetes.

DPP-IV inhibitors GLP-1 analogues

Orally available Injectable

Multiple targets Single known GPCR target

Stabilisation of endogenous 
GLP-1

Higher levels of circulating 
GLP-1 achievable

Short versus long acting Longer acting; days to weeks?

Drug overdose non-toxic Drug overdose potentially 
problematic

CNS side effects unlikely Potential for CNS side effects

Potential for unanticipated 
toxicity

Biological actions more 
precisely defined

DPP-IV: Dipeptidyl peptidase IV; GLP-1: Glucagon-like peptide 1; 
GPCR: G-protein-coupled receptor.
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